Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page

Publications organized by research topic (Prof. Greiner)

Sustainable, biofriendly, biobased, and bionic polymer materialsHide

Reviews

Wie Mikroorganismen und Elektroden interagieren. U. Schröder, A. Greiner, M. Rosenbaum, F. Harnisch, Nachrichten aus der Chemie 2016, 64, 732-737. DOI: 10.1002/nadc.20164044968

On the way to clean and safe electrospinning-green electrospinning: emulsion and suspension electrospinning. S. Agarwal, A. Greiner, Polym. Adv. Techn. 2011, 22, 372-378. DOI: 10.1002/pat.1883


Original papers

Biobased polycarbonate as a gas separation membrane and "breathing glass" for energy saving applications.
O. Hauenstein, Md. M. Rahman, M. Elsayed, R. Krause-Rehberg, S. Agarwal, V. Abetz, A. Greiner, Adv. Mater. Technol. 2017, 2, 170026 DOI: 10.1002/admt.201700026

Biosorption of copper from aqueous environments by micrococcus luteus in cell suspension and when encapsulated.
I. Letnik, R. Avrahami, R. Port, A. Greiner, E. Zussman, J. Rokem, C. Greenblatt, International Biodeterioration & Biodegradation 2017, 116, 64-72 DOI: 10.1016/j.ibiod.2016.09.029

Bio-based polycarbonate as synthetic toolbox. O. Hauenstein, S. Agarwal, A. Greiner, Nature Commun. 2016 DOI 10.1038/NCOMMS11862 

Protection of vine plants against Esca disease by breathable electrospun antifungal nonwovens.
V. Buchholz, M. Molnar, H. Wang, S. Reich, S. Agarwal, M. Fischer, A. Greiner, Macromol. Biosci. 2016 DOI: 10.1002/mabi.201600118

Synthesis and enzymatic degradation of soft aliphatic polyesters.
V. Buchholz, S. Agarwal, A. Greiner, Macromol. Biosci. 2016, 16, 207-213. DOI: 10.1002/mabi.201500279

Ultralight open cell polymer sponges with advanced properties by PPX CVD coating.
G. Duan, S. Jiang, T. Moss, S. Agarwal, A. Greiner, Polym. Chem. 2016 DOI: 10.1039/C6PY00339G

Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency.
O. Hauenstein, M. Reiter, S. Agarwal, B. Rieger, A. Greiner, Green Chemistry 2016, 18, 760-770. DOI: 10.1039/c5gc01694k

Living composites of bacteria and polymers as biomimetic films for metal sequestration and bioremediation.
C. Knierim, M. Enzeroth, P. Kaiser, C. Dams, D. Nette, A. Seubert, A. Klingl, C. L. Greenblatt, V. Jerome, S. Agarwal, R. Freitag, A. Greiner, Macromol. Biosci. 2015, 15, 1052-1059. DOI: 10.1002/mabi.201400538

Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems.
A. Baudler, I. Schmidt, M. Langner, A. Greiner, U. Schroder, Energy & Environmental Science, 2015, 8, 2048-2055. DOI:10.1039/c5ee00866b

Synthesis of liquid crystalline thioether-functionalized hydroxypropyl cellulose esters.
P. Ohlendorf, A. Greiner, Polymer Chemistry, 2015, 6, 2734-2739. DOI:10.1039/c4py01709a

Living Composites of Electrospun Yeast Cells for Bioremediation and Ethanol Production. 
I. Letnik, R. Avrahami, J. S. Rokem, A. Greiner, E. Zussmann, C. Greenblatt, Biomacromolecules 2015, 16, 3322-3328. DOI: 10.1021/acs.biomac.5b00970

Ultralight, soft polymer sponges by self-assembly of short electrospun fibers in colloidal dispersions.
G. Duan, S. Jiang, V. Jerome, J.H. Wendorff, A. Fathi, J. Uhm, V. Altstaedt, M. Herling, J. Breu, R. Freitag, S. Agarwal, A. Greiner, Adv. Funct. Mater. 2015, 25, 2850-2856. DOI:10.1002/adfm.201500001

Blocked bacteria escape by ATRP grafting of a PMMA shell on PVA microparticles.
C. Knierim, C. L. Greenblatt, S. Agarwal, A. Greiner, Macromol. Biosci. , 2014, 14, 537-545. DOI:10.1002/mabi.201300398

Solvent-free aqueous dispersions of block copolyesters for electrospinning of biodegradable nonwoven mats for biomedical applications.
K. Bubel, D. Grunenberg, G. Vasilyev, E. Zussman, S. Agarwal, A. Greiner, Macromolecular Materials and Engineering, 2014, 299, 1445-1454. DOI:10.1002/mame.201400116

Tenside-free biodegradable polymer nanofiber nonwovens by "green electrospinning".
K. Bubel, Y. Zhang, Y. Assem, S. Agarwal, A. Greiner, Macromolecules, 2013, 46, 7034-7042. DOI:10.1021/ma401044s

Chameleon nanofibers by green electrospinning.
E. Giebel, C. Mattheis, S. Agarwal, A. Greiner, Adv. Funct. Mater. 2013, 23, 3156-3163. DOI: 10.1002/adfm.201201873

The importance of crosslinking and glass transition temperature for the mechanical strength of nanofibers obtained by green electrospinning.
E. Giebel, J. Getze, T. Röcker,  A. Greiner, Macromol. Mater. Eng. 2013, 298, 439-446. DOI:10.1002/mame.201200080

Water-stable all-biodegradable microparticles in nanofibers by electrospinning of aqueous dispersions for biotechnical plant protection.
P. Bansal, K. Bubel, S. Agarwal, A. Greiner, Biomacromolecules 2012, 13, 439-444. DOI: 10.1021/bm2014679

Water-stable nonwovens composed of electrospun fibers from aqueous dispersions by photo-cross-linking.
E. Giebel, A. Greiner, Macromol. Mater. Eng. 2012, 297, 532-539. DOI: 10.1002/mame.201100401

Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells.
S. Chen, G. He, A. A. Carmona-Martinez, S. Agarwal, A. Greiner, H. Hou, U. Schröder, Electrochemistry Communications, 2011, 13, 1026-1029. DOI: 10.1016/j.elecom.2011.06.009

Organic electrospun nanofibers as vehicles toward intelligent pheromone dispensers: characterization by laboratory investigations.
I. Lindner, D. F. Hein, M. Breuer, H. E. Hummel, A. Deuker, A. Vilcinskas, G. Leithold, Ch. Hellmann, R. Dersch, J. H. Wendorff, A. Greiner, Comm. Appl. Biol. Sci. 2011, 76, 1-9.

Design of pheromone releasing nanofibers for plant protection.
C. Hellmann, A. Greiner, J. H. Wendorff, Polym. Adv. Techn. 2011, 22, 407-413. DOI: 10.1002/pat.1532

Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells.
S. Chen, H. Hou, F. Harnisch, S. Patil, A. A. Carmona-Martinez, S. Agarwal, Y. Zhang, S. Sinha-Rey, A. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 2011, 4, 1417-1421. DOI: 10.1039/c0ee00446d

Polymer/bacteria composite nanofiber nonwovens by electrospinning of living bacteria protected by hydrogel microparticles.
M. Gensheimer, A. Brandis-Heep, S. Agarwal, R. K. Thauer, A. Greiner Macromol. Biosci. 2011, 11, 333-337. DOI: 10.1002/mabi.201000310

Nanofibers by green electrospinning of aqueous suspensions of biodegradable block copolyesters for applications in medicine, pharmacy and agriculture.
J. Sun, K. Bubel, F. Chen, T. Kissel, S. Agarwal, A. Greiner, Macromol. Rapid Commun. 2010, 31, 2077-2083. DOI: 10.1002/marc.201000379

Novel 'nano in nano' composites for sustained drug delivery: biodegradable nanoparticles encapsulated into nanofiber non-wovens.
M. Beck-Broichsitter, M. Thieme, J. Nguyen. T. Schmehl, T. Gessler, W. Seeger, S. Agarwal, A. Greiner, T. Kissel Macromol. Biosci. 2010, 10, 1527-1535. DOI: 10.1002/mabi.201000100

Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. S. Maretschek, A. Greiner, T. Kissel, J. Controll. Rel. 2008, 127, 180-187. DOI: 10.1016/j.jconrel.2008.01.011

Connection of hippocampal neurons by magnetically controlled movement of short electrospun polymer fibers – a route to magnetic micromanipulators.
O. Kriha, M. Becker, M. Lehmann, D. Kriha, J. Krieglstein, M. Yosef, S. Schlecht, R. B. Wehrspohn, J. H. Wendorff, A. Greiner, Adv. Mater. 2007, 19, 2483-2485. DOI: 10.1002/adma.200601937

Novel biohybrid materials by electrospinning: nanofibers of poly(ethylene oxide) and living bacteria.
M. Gensheimer, M. Becker, A. Brandis-Heep, J. H. Wendorff, R. K. Thauer, A. Greiner, Adv. Mater. 2007, 19, 2480-2482. DOI: 10.1002/adma.200602936

Preparation of water-stable submicron fibers from aqueous latex dispersion of water-insoluble polymers by  electrospinning.
A. Stoiljkovic, M. Ishaque, U. Justus, L. Hamel, E. Klimov, W. Heckmann, B. Eckhardt, J. H. Wendorff, A. Greiner, Polymer 2007, 48, 3974-3981. DOI: 10.1016/j.polymer.2007.04.050

Electrospun poly(vinyl alcohol)/poly(acrylic acid) fibres with excellent water-stability.
J. Zeng, H. Hou, J. H. Wendorff, A. Greiner, e-polymers 2004, No. 78.

Synthesis and opto-electronic properties of cholesteric cellulose esters.
A. Greiner, H. Hou, A. Reuning, A. Thomas, J. H. Wendorff, S. Zimmermann, Cellulose 2003, 10, 37-52. DOI: 10.1023/A:1023038303103

Effect of blending of cholesteric cellulose esters on the pitch height.
H. Hou, A. Reuning, J. H. Wendorff, A. Greiner, Macromol. Biosci. 2001, 1, 45-48. DOI: 10.1002/1616-5195

Optical properties of guest host systems based on cellulose derivatives.
E. Arici, A. Greiner, H. Hou, A. Reuning, J. H. Wendorff, Macromol. Chem. Phys. 2000, 201, 2083-2090. DOI: 10.1002/1521-3935

Tuning of the pitch height of thermotropic cellulose esters.
H. Hou, A. Reuning, J. H. Wendorff, A. Greiner, Macromol. Chem. Phys. 2000, 201, 2050-2054. DOI: 10.1002/1521-3935(20001001)

Polymeric materials for optical and electrical applicationsHide

Reviews

Polymer-based LEDs. A. Greiner, Polym. Adv. Technol. 1998, 9, 369-369. DOI: 10.1002/(SICI)1099-1581(199807)9:7<369::AID-PAT819>3.0.CO;2-F

Design and synthesis of polymers for light-emitting diodes.
A. Greiner, Polym. Adv. Technol. 1998, 9, 371-389. DOI: 10.1002/(SICI)1099-1581(199807)9:7<371::AID-PAT817>3.0.CO;2-7

Preparation and structure-property relationships of polymeric materials containing arylenevinylene segments - perspectives for new light-emitting materials.
A. Greiner, B. Bolle, P. Hesemann, J. M. Oberski, R. Sander, Macromol. Chem. Phys. 1996, 197, 113-134. DOI: 10.1002/macp.1996.021970109

Polymeric materials with arylenevinylene segments - synthesis and architecture.
A. Greiner, Adv. Mater. 1993, 5, 477-479. DOI: 10.1002/adma.19930050616


Original papers

Polarized electroluminescence from liquid crystalline polymers.
K. Clauswitz, F. Geffarth, A. Greiner, G. Lussem, J. H. Wendorff, Synth. Metals, 2000, 111, 169-171. DOI: 10.1016/S0379-6779(99)00339-2

Time dependence of the steady state fluorescence in polymer guest-host systems.
E. Arici, A. Greiner, F. Raubacher, J. H. Wendorff, Macromol. Chem. Phys. 2000, 201, 1679-1686. DOI: 10.1002/1521-3935(20000901)201:14<1679::AID-MACP1679>3.0.CO;2-C

Film-forming poly(p-phenylenevinylene)s for light emitting applications via poly(p-
xylylene)s by a solvent-free process.
O. Schäfer, M. Ishaque, A. Greiner, S. Spiegel, C. Möller, H.-W. Spiess, Designed Monomers and Polymers 1999, 2, 231-238. DOI: 10.1163/156855599X00052

Laser emission from a solid conjugated polymer: gain, tunability, and coherence. 
G. Wegmann, H. Giessen, A. Greiner, R. F. Mahrt, Phys. Rev. B 1998, 57, R4218-R4221. DOI: 10.1103/PhysRevB.57.R4218

Simple poly(p-xylylene)s as precursor polymers for poly(p-phenylenevinylele)s and segmented poly(p-phenylenevinylele)s: synthesis, polymer analogous reactions, thermal and optical properties.
O. Schäfer, S. Mang, E. Arici, G. Lüssem, C. Unterlechner, J. H. Wendorff, A. 
Greiner, Macromol. Chem. Phys. 1998, 199, 807-813. DOI: 10.1002/(SICI)1521-3935(19980501)199:5<807::AID-MACP807>3.0.CO;2-W

Polythienylenevinylene as promoter of hole injection from ITO into bilayer light emitting diodes.
Y. H. Tak, S. Mang, A. Greiner, H. Bässler, S. Pfeiffer, H. H. Hörhold, 
Acta Polym. 1997, 48, 450-454. DOI: 10.1002/actp.1997.010481006

Columnar discotics for light emitting diodes.
T. Christ, B. Glüsen, A. Greiner, A. Kettner, R. Sander, V. Stümpflen, V. Tsukruk, J. H. Wendorff, Adv. Mater. 1997, 9, 48-52. DOI: 10.1002/adma.19970090110

Multicoloured chromophore for white-light-emitting diodes.
T. Christ, A. Greiner, R. Sander, V. Stümpflen, J. H. Wendorff, Adv. Mater. 1997, 9, 219-222. DOI: 10.1002/adma.19970090305

Polystyrenes modified by short arylenevinylene segments for light-emitting applications: synthesis and structure-property relationships.
P. Hesemann, A. Greiner, Polym. Adv. Technol. 1997, 8, 23-29. DOI: 10.1002/(SICI)1099-1581(199701)8:1<23::AID-PAT607>3.0.CO;2-W

Optical characterization of tris-(stilbene) amine and application in microcavities.
M. Hopmeier, U. Siegner, U. Lemmer, R. Hennig, W. Guss, J. Pommerehne, R. Sander, A. Greiner, R. F. Mahrt, H. Bassler, J. Feldmann, E. O. Gobel, Synth. Metals, 1996, 76, 117-119. DOI: 10.1016/0379-6779(95)03432-J

Polarized electroluminescence of light emitting liquid crystalline polymers.
G. Lüssem, F. Geffarth, A. Greiner, W. Heitz, M. Hopmeier, M. Oberski, C. Unterlechner, J. H. Wendorff, Liquid Cryst. 1996, 21, 903-907. DOI: 10.1080/02678299608032908

Photochemische und thermische Stabilität eines Phenylen-Vinylen-Polymeren.
T. Damerau, S. Sabelus, V. Wachtendorf, M. Hennecke, A. Greiner, GIT, Fachzeitschrift f. Labor und Technik 1996, 40, 710-712.

Synthesis, properties, and guest-host systems of triphenylamine-based oligo(arylenevinylene)s: Advanced materials for LED applications.
R. Sander, V. Stümpflen, J. H. Wendorff, A. Greiner, Macromolecules 1996, 29, 7705-7708. DOI: 10.1021/ma960743y

Poly(p-phenylenevinylene) by chemical vapor deposition: synthesis, structural evaluation, glass transition, electroluminescence, and photoluminescence.
O. Schäfer, A. Greiner, J. Pommerehne, W. Guss, H. Vestweber, H. Y. Tak, H. Bässler, C. Schmidt, G. Lüssem, B. Schartel, V. Stümpflen, J. H. Wendorff, S. Spiegel, C. Möller, J. W. Spiess, Synth. Metals 1996, 82, 1-9. DOI: 10.1016/S0379-6779(97)80001-X

Polarized photoluminescence of liquid crystalline polymers with isolated arylenevinylene segments in the main chain.
G. Lüssem, R. Festag, A. Greiner, C. Schmidt, C. Unterlechner, W. Heitz, J. H. Wendorff, M. Hopmeier, J. Feldmann, Adv. Mater. 1995, 7, 923-925. DOI: 10.1002/adma.19950071112

Synthesis and structure-property relationships of processable liquid crystalline polymers with arylenevinylene segments in the main chain for light-emitting applications.
J. Oberski, R. Festag, C. Schmidt, G. Lüssem, J. H. Wendorff, A. Greiner, M. Hopmeier, F. Motamedi, Macromolecules 1995, 28, 8676-8682. DOI: 10.1021/ma00129a029

Microcavity effects in a spin-coated polymer two-layer system.
U. Lemmer, R. Hennig, W. Guss, A. Ochse, J. Pommerehne, R. Sander, A. Greiner, R. F. Mahrt, H. Bässler, J. Feldmann, E. O. Göbel, Appl. Phys. Lett. 1995, 66, 1301-1303. DOI: 10.1063/1.113222

A blue light emitting polymer with phenylenevinylene segments in the side-chains.
P. Hesemann, H. Vestweber, J. Pommerehne, R. F. Mahrt, A. Greiner, Adv. Mater. 1995, 7, 388-390. DOI: 10.1002/adma.19950070409

Majority carrier injection from ITO anodes into organic light emitting diodes based upon polymer blends.
H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, H. Bässler, Synth. Metals 1995, 68, 263-268. DOI: 10.1016/0379-6779(94)02301-E

Electroluminescence from polymer blends and molecularly doped polymers.
H. Vestweber, R. Sander, A. Greiner, W. Heitz, R. F. Mahrt, H. Bässler, Synth. Metals 1994, 64, 141-145. DOI: 10.1016/0379-6779(94)90105-8

Control of the emission properties of conjugated polymers: trapping and microcavities effects.
A. Ochse, U. Lemmer, M. Deussen J. Feldmann, A. Greiner, R. F. Mahrt, H. Bässler, E. O. Göbel, Mol. Cryst. Liq. Cryst. 1994, 256, 335-342. DOI: 10.1080/10587259408039264

Synthesis and blending behavior of an oligoarylenevinylene. Design towards processable materials for LED appplications.
J. Oberski, B. Bolle, A. Schaper, A. Greiner, Polym. Adv. Technol. 1994, 5, 105-109. DOI: 10.1002/pat.1994.220050204

Time resolved luminescence spectroscopy of conjugated polymers. R. F. Mahrt, U. Lemmer, A. Greiner, Y. Wada, H. Bässler, E. O. Göbel, R. Kersting, K. Leo, H. Kurz, Journal of Luminescence 1994, 60-61, 479-481. DOI: 10.1016/0022-2313(94)90196-1

Photoreactivity of poly(p-phenylenevinylene).
T. Damerau, M. Hennecke, A. Greiner, Polym. Bull. 1994, 32, 201-205. DOI: 10.1007/BF00306389

Picosecond hopping relaxation in conjugated polymers.
U. Lemmer, R. F. Mahrt, Y. Wada, A. Greiner, H. Bässler, E. O. Göbel, Chem. Phys. Lett. 1993, 209, 243-246. DOI: 10.1016/0009-2614(93)80101-T

Electroluminescence from phenylenevinylene-based polymer blends.
H. Vestweber, J. Oberski, A. Greiner, W. Heitz, R. F. Mahrt, H. Bässler, Adv. Mat. Opt. Electr. 1993, 2, 197-204. DOI: 10.1002/amo.860020407

Time resolved luminescence study of recombination processes in electro-luminescent polymers.
U. Lemmer, R. F. Mahrt,  Y. Wada, A. Greiner, H. Bässler, E. O. Göbel, Appl. Phys. Lett. 1993, 62, 2827-2829. DOI: 10.1063/1.109223

Conformational effects in poly(p-phenylene vinylene)s revealed by low-temperature site-selective fluorescence.
S. Heun, R. F. Mahrt, A. Greiner, U. Lemmer, H. Bässler, D. A. Halliday, D. D. C. Bradley, P. L. Burn, A. B. Holmes, J. Phys.: Condens. Matter 1993, 5, 247-260. DOI: 10.1088/0953-8984/5/2/012

Time-resolved studies of two-photon absorption processes in poly(p-phenylenevinylene)s.
U. Lemmer, R. Fischer, J. Feldmann, R. F. Mahrt, J. Yang, A. Greiner, H. Bässler, E. O. Göbel, H. Hessel, H. Kurz, Chem. Phys. Lett. 1993, 203, 28-32. DOI: 10.1016/0009-2614(93)89304-Z

Progress towards processible materials for light-emitting devices using poly(p-phenylphenylenevinylene).
H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, H. Bässler, Adv. Mater. 1992, 4, 661-662. DOI: 10.1002/adma.19920041008

DC and transient photoconductivity of poly(2-phenyl-1,4-phenylene-vinylene) (PPPV).
M. Gailberger, A. Greiner, H. Bassler, Synth. Metals, 1991, 41, 1269-1272. DOI: 10.1016/0379-6779(91)91603.8

Absorption spectra of the anions of phenylenevinylene oligomers and polymer.
J. M. Oberski, A. Greiner, H. Bässler, Chem. Phys. Lett. 1991, 184, 391-397. DOI: 10.1016/0009-2614(91)80007-K

Site-selective fluorescence spectroscopy of poly(p-phenylenevinylene)s and oligomeric model compounds.
R. Mahrt, J. Yang, A. Greiner, H. Bässler, D. D. C. Bradley, Makromol. Chem., Rapid Commun. 1990, 11, 415-421. DOI: 10.1002/marc.1990.030110901

Site-selective spectroscopy of matrix isolated conjugated polymers.
U. Rauscher, L. Schütz, A. Greiner, H. Bässler, J. Phys.: Condens. Matter 1989, 1, 9751-9763. DOI: 10.1088/0953-8984/1/48/022

​Liquid crystalline polymersHide

Reviews

Aromatic main chain liquid crystalline polymers.
A. Greiner, H.-W. Schmidt, Handbook of Liquid Crystals, 1998, 3, 1-25, Eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, Wiley-VCH, Weinheim

Thermoreversible gelation of rigid and semirigid polymers.
A. Greiner, W. E. Rochefort, in: Polymer Liquid Crystals - Mechanical and Thermophysical Properties, Editor W. Brostow, 1998, 431-447, Chapman & Hall, London. DOI: 10.1007/978-1-4615-5799-9_13

    
Original papers

Supramolecular nanocomposites: dual-functional cholesteric hydroxypropyl cellulose esters chemically linked to gold nanoparticles.
P. Ohlendorf, M. Dulle, S. Förster, A. Greiner, Chemnanomat 2016, 2, 290-296. DOI: 10.1002/cnma.201600042

Hydrolytic and enzymatic degradation of liquid-crystalline aromatic/aliphatic copolyesters.
Y. Chen, Z. Jia, A. Schaper, M. Kristiansen, P. Smith, R. Wombacher, J. H. Wendorff, A. Greiner, Biomacromolecules 2004, 5, 11-16. DOI: 10.1021/bm034388c

Preparation and characterization of fibres from a thermotropic liquid crystal polyester with non-coplanar biphenylene units.
F. Motamedi, U. Jonas, A. Greiner, H.-W. Schmidt, Liquid Cryst. 1993, 14, 959-970. DOI: 10.1080/02678299308027803

Formation of thermoreversible gels from liquid-crystalline polyesters.
A. Greiner, W. E. Rochefort, K. Greiner, H.-W. Schmidt, D. S. Pearson, Makromol. Chem., Rapid Commun. 1992, 13, 25-30. DOI: 10.1002/marc.1992.030130105

Structural modifications of poly(1,4-phenylenevinylene) to soluble, fusible, liquid-crystalline  products.
H. Martelock, A. Greiner, W. Heitz, Makromol. Chem. 1991, 192, 967-979. DOI: 10.1002/macp.1991.021920419

Synthesis of arylsubstituted monomers for high-performance  polymers.
H. T. Land, W. Hatke, A. Greiner, H.-W. Schmidt, W. Heitz, Makromol. Chem. 1990, 191, 2005-2016. DOI: 10.1002/macp.1990.021910903

​Poly(p-xylylene) and related polymersHide

Reviews

Poly(p-xylylene)s: synthesis, polymer analogeous reactions, and perspectives on structure-property relationships.
A. Greiner, S. Mang, O. Schäfer, P. Simon, Acta Polym. 1997, 48, 1-15. DOI: 10.1002/actp.1997.010480101

Poly(1,4-xylylene)s: polymer films by chemical vapour deposition.
A. Greiner, Trends in Polymer Science 1997, 5, 12-16.

Poly(p-xylylene)s (structure, properties, and applications).
A. Greiner, The Polymeric Materials Encyclopedia 1996, 9, 7171-7180, Ed. J. C. Salamone, CRC Press, Bocca Raton.


Original papers

Hierarchically structured poly(alkyl-p-xylylene) nonwovens with superhydrophobic properties. 
I. Paulus, T. Moss, A. Greiner, Macromol. Mater. Eng. 2016, 301, 1225-1231. DOI: 10.1002/mame.201600140

Chemical vapour deposition of soluble poly(p-xylylene) copolymers with tuneable properties. 
I. E. Paulus, M. Heiny, V. P. Shastri, A. Greiner, Polym. Chem. 2016, 7, 54-62. DOI: 10.1039/c5py01343g

Highways for ions in polymers-3D-imaging of electrochemical interphase formation.
V. Wesp, J. Zakel, M. Schaefer, I. Paulus, A. Greiner, K. M. Weitzel, Electrochimica Acta 2015, 170, 122-130. DOI: 10.1016/j.electacta.2015.04.117

Bombardment induced ion transport – part III: experimental potassium ion conductivities in poly(para-xylylene).
S. Schulze, M. Schäfer,  A. Greiner, K.-M. Weitzel, Phys. Chem. Chem. Phys. 2013, 15, 1481-1487. DOI:10.1039/c2cp43144k

Synthesis, properties, and processing of new siloxane-substituted poly(p-xylylene) via CVD.
A. K. Bier, M. Bognitzki, A. Schmidt, A. Greiner, E. Gallo, P. Klack, B. Schartel, Macromolecules, 2012, 45, 633-639. DOI: 10.1021/ma2021369

Synthesis, structure, and properties of alkyl substituted PPXs by chemical vapor deposition for stent coatings.
A. K. Bier, M. Bognitzki, J. Mogk, A. Greiner, Macromolecules, 2012, 45, 1151-1157. DOI: 10.1021/ma202270w

Thermally cross-linkable poly(p-xylylene)s for advanced low-dielectric applications.
S. V. Mulpuri, B.-G. Shin, M. Bognitzki, A. Greiner, D. Y. Yoon, Macromol. Chem. Phys. 2012, 213, 705-712. DOI: 10.1002/macp.201100558

In vitro study of dexamethasone release from poly(p-xylylene) films.
P. Hanefeld, S. Agarwal, R. Kumar, A. Greiner, Macromol. Chem. Phys. 2010, 211, 265-269. DOI: 10.1002/macp.200900537

Investigation of the ion permeability of poly(p-xylylene) films.
P. Hanefeld, F. Sittner, W. Ensinger, A. Greiner, e-Polymers 2006, No. 26.

Synthesis and characterisation of graft co-polymers of derivatives of poly(p-xylylene).
R. Madan, A. Greiner, Designed Monomers and Polymers 2006, 9, 81-87. DOI: 10.1163/156855506775526214

Synthesis and properties of novel poly(p-xylylene)s with aliphatic substituents.
M. Ishaque, S. Agarwal, A. Greiner, e-Polymers 2002, No. 31.

Efficient control on molecular weight in the synthesis of poly(p-xylylene)s via Gilch polymerization.
F. Brink-Spalink, A. Greiner, Macromolecules 2002, 35, 3315-3317. DOI: 10.1021/ma010623c

Synthesis and structure-property relationships of novel poly(p-xylylene)s with aromatic substituents.
M. Ishaque, R. Wombacher, J. H. Wendorff, A. Greiner, e-Polymers 2001, No. 5.

Synthesis and properties of omega-phenylalkyl-substituted poly(p-xylylene)s prepared by base induced 1,6-dehydrohalogenation.
O. Schäfer, F. Brink-Spalink, B. Smarsly, C. Schmidt, J. H. Wendorff, C. Witt, T. 
Kissel, A. Greiner, Macromol. Chem. Phys. 1999, 200, 1942-1949. DOI: 10.1002/(SICI)1521-3935(19990801)200:8<1942::AID-MACP1942>3.0.CO;2-H

Synthesis of poly(p-xylylene)s by base induced 1.6-dehydrohalogenation - control of the degree of polymerization.
O. Schäfer, F. Brink-Spalink, A. Greiner, Macromol. Rapid Commun. 1999, 20, 190-193. DOI: 10.1002/(SICI)1521-3927(19990401)20:4<190::AID-MARC190>3.0.CO;2-Z

Control of crystalline modifications of poly(p-xylylene) by copolymerization.
B. Smarsly, F. Brink-Spalink, O. Schäfer, C. Schmidt, A. Greiner, W. Ruland, J. H. Wendorff, Macromol. Chem. Phys. 1999, 200, 714-718. DOI: 10.1002/(SICI)1521-3935(19990401)200:4<714::AID-MACP714>3.0.CO;2-6

Synthesis of OH-functionalized poly(p-xylylene)s by reductive coupling polymerization of aromatic dialdehydes with catalytic amounts of divalent Samarium compounds.
N. E. Brandukova-Szmikowski, A. Greiner, Acta Polym. 1999, 50, 141-144. DOI: 10.1002/(SICI)1521-4044(19990401)50:4<141::AID-APOL141>3.0.CO;2-T

Synthesis of OH-functionalized poly(p-xylylene)s by reductive coupling polymerization of aromatic dialdehydes with stoichiometric amounts of divalent Samarium compounds.
N. E. Brandukova-Szmikowski, S. Agarwal, A. Greiner, Acta Polym. 1999, 50, 35-39. DOI: 10.1002/(SICI)1521-4044(19990101)50:1<35::AID-APOL35>3.0.CO;2-H

Poly(p-xylylene) and its derivatives by chemical vapor deposition: synthesis, 
mechanism, and structure.
P. Simon, S. Mang, A. Hasenhindl, W. Gronski, A. Greiner, Macromolecules 1998, 31, 8775-8780. DOI: 10.1021/ma9808070

Structural analysis of PPX prepared by vapor phase pyrolysis of [2.2]paracyclophane.
C. Schmidt, V. Stümpflen, J. H. Wendorff, A. Hasenhindl, W. Gronski, M. Ishaque, A.
Greiner, Acta Polym. 1998, 49, 232-235. DOI: 10.1002/(SICI)1521-4044(199805)49:5<232::AID-APOL232>3.0.CO;2-L

Soluble and amorphous, phenyl substituted poly(1,4-xylylene) by chemical vapor deposition.
O. Schäfer, A. Greiner, Macromolecules 1996, 29, 6074-6075. DOI: 10.1021/ma960681b

Samarium (II) iodine: A diastereoselective reagent for the synthesis of aromatic 1,2-diol structures - model reactions.
V. U. Wege, A. Greiner, Acta Polym. 1995, 46, 396-403. DOI: 10.1002/actp.1995.010460508

New synthetic approach to OH-functionalized poly(p-xylylene)s by coupling of 
aromatic dialdehydes and diketones in the presence of SmI2.
V. U. Wege, A. Greiner, Acta Polym. 1995, 46, 391-395. DOI: 10.1002/actp.1995.010460507

New synthetic approach to film forming poly-p-xylylene by gas phase pyrolysis of esters derivated from a, α'-dihydroxy-p-xylylene.
P. Simon, A. Greiner, Polym. J.  1992, 24, 1317-1320. DOI: 10.1295/polymj.24.1317

​Metal catalyzed polymerisations and polycondensationsHide

Reviews

Unusual complex chemistry of rare-earth elements: large ionic radii – small coordination numbers.
K. Dehnicke, A. Greiner, Angew. Chem. Int. Ed. 2003, 42, 1340-1354. DOI: 10.1002/anie.200390346

Diiodosamarium based polymerisations.
S. Agarwal, A. Greiner, J. Chem. Soc., Perkin Trans. 2002, 1, 2033-2042. DOI: 10.1039/b203903f

Rare earth metal initiated ring-opening polymerization of lactones.
S. Agarwal, C. Mast, K. Dehnicke, A. Greiner, Macromol. Rapid Commun. 2000, 21, 195-212. DOI: 10.1002/(SICI)1521-3927(20000301)21:5<195::AID-MARC195>3.0.CO;2-4

Pd-catalyzed synthesis (monomers and polymers).
Greiner, W. Heitz, The Polymeric Materials Encyclopedia 1996, 7, 4865-4871, Ed. J. C. Salamone, CRC Press, Bocca Raton.


Original papers

Bottom-up meets top-down: Patchy hybrid nonwovens as an efficient catalysis platform.
J. Schöbel, M. Burgard, C. Hills, R. Dersch, M. Dulle, K. Volk, M. Karg, A. Greiner, H. Schmalz, Angew. Chem. 2017, 56, 405-408. DOI: 10.1002/anie.201609819

Synthesis and characterization of substituted polynorbornene derivatives.
S. V. Mulpuri, J. Shin, B.-G. Shin, A. Greiner, D. Y. Yoon, Polymer 2011, 52, 4377-4386. DOI: 10.1016/j.polymer.2011.07.019

Vinyl-type polymerization of alkylester-substituted norbornenes without endo/exo separation.
K. Müller, Y. Jung, D. Y. Yoon, S. Agarwal, A. Greiner, Macromol. Chem. Phys. 2010, 211, 1595-1601. DOI: 10.1002/macp.200900647

Nonflexible coils in solution: a neutron spin-echo investigation of alkyl-substituted polynorbornenes in tetrahydrofuran. M. Monkenbusch, J. Allgaier, D. Richter, J. Stellbrink, L. J. Fetters, A. Greiner, Macromolecules 2006, 39, 9473-9479. DOI: 10.1021/ma0618979

Synthesis and rheological properties of poly(5-n-hexylnorbornene).
K. Müller, S. Kreiling, K. Dehnicke, J. Allgaier, D. Richter, L. J. Fetters, Y. Jung, D. Y. Yoon, A. Greiner, Macromol. Chem. Phys. 2006, 207, 193-200. DOI: 10.1002/macp.200500228

Synthesis and microstructural characterisation of copolymers of L-lactide and trimethylene carbonate prepared using the Sml2/Sm initiator system.
S. Agarwal, M. Puchner, A. Greiner, J. H. Wendorff, Polym. Int. 2005, 54, 1422-1428. DOI: 10.1002/pi.1865

2D NMR characterisation of 5-norbornene-2-nonaneacidethylester and 5-norbornene-2-hexane.
K. Müller, S.-H. Chun, A. Greiner, S. Agarwal, Designed Monomers and Polymers 2005, 8/3, 237-248. DOI: 10.1163/1568555053993989

Nanoporous low-kappa polyimide films via poly(amic acid)s with grafted poly(ethylene glycol) side chains from a reversible addition-fragmentation chain-transfer-mediated process.
Y. Chen, W. Wang, W. Yu, Z. Yuan, E.-T. Kang, K.-G. Neoh, B. Krauter, A. Greiner, Adv. Funct. Mater. 2004, 14, 471-478. DOI: 10.1002/adfm.200305050

Die Insertion von Chalkogenatomen in die Gallium-Gallium-Bindung von Acetat-verbrückten Digallanen.
W. Uhl, L. Cuypers, T. Spies, F. Weller, B. Harbrecht, M. Conrad, A. Greiner, M. Puchner, J. H. Wendorff, Z. Anorg. Allg. Chem. 2003, 629, 1124-1130. DOI: 10.1002/zaac.200300443

Grafting of vinyl-type polynorbornene on polybutadiene and polyisoprene.
M. Schroers, J. Demeter, K. Dehnicke, A. Greiner, Macromol. Chem. Phys. 2002, 203, 2658-2664. DOI: 10.1002/macp.200290046

Homoleptic lanthanide complexes of chelating bis(phosphino)amides: synthesis, structure and ring-opening polymerization of lactones.
P. W. Roesky, M. T. Gamer, M. Puchner, A. Greiner, Chem. Eur. J. 2002, 8, 5265-5271. DOI: 10.1002/1521-3765(20021115)8:22<5265::AID-CHEM5265>3.0.CO;2-V

Die Kristallstrukturen des Phosphaniminato-Komplexes [INi(NPMe3)]4 . C4H8O . C7H8 und des Phosphanimin-Komplexes [INi{Me2Si(NPMe3)2} (HNPMe3)]+I-
U. Müller, O. Bock, H. Sippel, T. Gröb, K. Dehnicke, A. Greiner, Z. Anorg. Allg. Chem. 2002, 628, 1703-1707. DOI: 10.1002/1521-3749(200207)628:7<1703::AID-ZAAC1703>3.0.CO;2-3

Phosphaniminato-Komplexe des Zirconiums: Die Kristallstrukturen von [ZrCl3(NPPh3)(HNPPh3)2] und [ZrCl2(NPPh3)2(HNPPh3)2].
T. Gröb, G. Geiseler, K. Harms, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 2002, 628, 217-221. DOI: 10.1002/1521-3749(200201)628:1<217::AID-ZAAC217>3.0.CO;2-G

Molecular weight control and end group functionalization of polynorbornene By Ni(II)-initiated polymerization of norbornene in the presence of ethylene and α-olefins.
C. Mast, M. Krieger, K. Dehnicke, A. Greiner, e-Polymers 2001, No. 16.

Sm based initiators for the ring-opening polymerization of L-lactide.
S. Agarwal, M. Karl, K. Dehnicke, A. Greiner, e-Polymers 2001, No. 12.

Die Kristallstrukturen von trans-[NiBr2(Pyridin)4] und [Ni(HNPEt3)4]I2.
T. Gröb, B. Neumüller, K. Harms, F. Schmock, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 2001, 627, 1928-1931. DOI: 10.1002/1521-3749(200108)627:8<1928::AID-ZAAC1928>3.0.CO;2-V

Novel [Sm2I(NPPh3)5(DME)] initiator for the living ring-opening polymerization of epsilon-caprolactone and delta-valerolactone.
P. Ravi, T. Gröb, K. Dehnicke, A. Greiner, Macromolecules 2001, 34, 8649-8653. DOI: 10.1021/ma010496k

Ring-opening polymerization of epsilon-caporlactone by phosphorane iminato and cyclopentadienyl complexes of rare earth elements.
P. Ravi, T. Gröb, K. Dehnicke, A. Greiner, Macromol. Chem. Phys. 2001, 202, 2641-2647. DOI: 10.1002/1521-3935(20010801)202:12<2641::AID-MACP2641>3.0.CO;2-Q

Phosphaniminato- und Phosphanimin-Komplexe von Nickel(II). Die Kristallstrukturen von [Ni(O3SCF3)(NPMe3)]4, [Ni4Br5{NP(NMe2)3}3], [NiBr2{HNP(NMe2)3}2] und [Ni(PMePh2)4].
M. Krieger, R. O. Gould, K. Harms, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 2001, 627, 747-754. DOI: 10.1002/1521-3749(200104)627:4<747::AID-ZAAC747>3.0.CO;2-H

Kristallstruktur von Kaliumtriflat-Butylrolacton, [K3(O3SCF3)3(O2C4H6)2].
T. Gröb, G. Seybert, W. Massa, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 2001, 627, 1-3. DOI: 10.1002/1521-3749(200101)627:1<1::AID-ZAAC1>3.0.CO;2-H

Homoleptic phosphoraneiminato complexes of rare earth elements as initiators for ring-opening polymerization of lactones. T. Gröb, G. Seybert, W. Massa, F. Weller, R. Palaniswami, A. Greiner, K. Dehnicke, Angew. Chem. Int.Ed.2000, 39, 4373-4375. DOI: 10.1002/1521-3773(20001201)39:23<4373::AID-ANIE4373>3.0.CO;2-K

Homoleptische Phosphaniminato-Komplexe von Seltenerdelementen als Initiatoren für die ringöffnende Polymerisation von Lactonen.
T. Gröb, G. Seybert, W. Massa, F. Weller, R. Palaniswami, A. Greiner, K. Dehnicke, Angew. Chem. 2000, 112, 4542-4544. DOI: 10.1002/1521-3757(20001201)112:23<4542::AID-ANGE4542>3.0.CO;2-#

Kristallstrukturen der Samarium-Amido-Komplexe [Sm(mu-X){N(SiMe3)2}2(THF)]2 mit X = Cl, Br.
M. Karl, G. Seybert, W. Massa, S. Agarwal, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 1999, 625, 1405-1407. DOI: 10.1002/(SICI)1521-3749(199909)625:9<1405::AID-ZAAC1405>3.0.CO;2-5

Samarium(III)-mediated graft polymerization of epsilon-caprolactone and L-Lactide on funtionalized poly(p-xylylene)s: model studies and polymerizations.
S. Agarwal, N. E. Brandukova-Szmikowski, A. Greiner, Polym. Adv. Techn. 1999, 10, 528-534. DOI: 10.1002/(SICI)1099-1581(199909)10:9<528::AID-PAT905>3.0.CO;2-3

Phosphaniminato-Komplexe von Seltenerdelementen. Die Kristallstrukturen von [Yb2Cp3(NPPh3)3], [YCp(NPPh3)(mu-OSiMe2NPPh3)]2 und [M(NPPh3)2(mu-OSiMe2NPPh3)]2 mit M = Y und Sm.
S. Anfang, T. Gröb, K. Harms, G. Seybert, W. Massa, A. Greiner, K. Dehnicke, Z. Anorg. Allg. Chem. 1999, 625, 1853-1859. DOI: 10.1002/(SICI)1521-3749(199911)625:11<1853::AID-ZAAC1853>3.0.CO;2-4

Reactivity of Sm(II) compounds as ring-opening polymerization initiators for lactones.
S. Agarwal, N. E. Brandukova-Szmikowski, A. Greiner, Macromol. Rapid Commun. 1999, 20, 274-278. DOI: 10.1002/(SICI)1521-3927(19990501)20:5<274::AID-MARC274>3.0.CO;2-J

Amidometallate von Seltenerdelementen. Synthese und Kristallstrukturen von
[Na(12-Krone-4)2][M{N(SiMe3)2}3(OSiMe3)] (M=Sm,Yb),[Na(THF)3 
Sm(N(SiMe3)2)}3(C C-Ph)], [Na(THF)6][Lu2(mu-NH2)( mu-NSiMe3) {N(SiMe3)2}4] 
sowie von [NaN(SiMe3)2(THF)]2. Anwendungen der Seltenerdkomplexe als 
Polymerisationskatalysatoren.
M. Karl, G. Seybert, W. Massa, K. Harms, S. Agarwal, R. Maleika, W. Stelter, A.    Greiner, W. Heitz, B. Neumüller, K. Dehnick, Z. Anorg. Allg. Chem. 1999, 625, 1301-1309. DOI: 10.1002/(SICI)1521-3749(199908)625:8<1301::AID-ZAAC1301>3.0.CO;2-0

Vinyl-type polymerization of norbornene by a nickel-based catalyst with phosphoraneiminato ligands.
C. Mast, M. Krieger, K. Dehnicke, A. Greiner, Macromol. Rapid Commun. 1999, 20, 232-235. DOI: 10.1002/(SICI)1521-3927(19990401)20:4<232::AID-MARC232>3.0.CO;2-A

Ring opening polymerization of epsilon-caprolactone and delta-valerolactone using new Sm(III) mu-halo-bis(trimethylsilyl)amido complexes.
S. Agarwal, M. Karl, K. Dehnicke, G. Seybert, W. Massa, A. Greiner, J. Appl. Polym.
Sci. 1999, 73, 1669-1674. DOI: 10.1002/(SICI)1097-4628(19990829)73:9<1669::AID-APP7>3.0.CO;2-1

Synthesis of polybenzyls by Suzuki Pd-catalyzed crosscoupling of boronic acids and benzyl bromides: model reactions and polyreactions.
C. Klärner, A. Greiner, Macromol. Rapid Commun. 1998, 19, 605-608. DOI:10.1002/(SICI)1521-3927(19981201)19:12<605::AID-MARC605>3.0.CO;2-I

Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction.
S. Klingelhöfer, W. Heitz, A. Greiner, S. Oestreich, S. Förster, M. Antonietti, J. Am. Chem. Soc. 1997, 119, 10116-10120. DOI: 10.1021/ja9714604

Regioselectivity of the Pd-catalyzed synthesis of arylenevinylenes and its impact on polymer properties: model reaction and polyreactions.
S. Klingelhöfer, C. Schellenberg, J. Pommerehne, H. Bässler, A. Greiner, W. Heitz,
Macromol. Chem. Phys. 1997, 198, 1511-1530. DOI: 10.1002/macp.1997.021980516

Palladium catalyzed synthesis of poly(1,4-phenylenevinylene).
A. Greiner, H. Martelock, W. Heitz, Synth. Metals, 1991, 41, 881-884. DOI: 10.1016/0379-6779(91)91517-E

Novel palladium-catalyzed biaryl synthesis with haloarenes.
M. Brenda, A. Knebelkamp, A. Greiner, W. Heitz, Synlett 1991, 11, 809-810. DOI: 10.1055/s-1991-20885

Model reactions for the synthesis of poly(1,4-phenylenevinylene). The palladium catalyzed arylation of ethylene with halogenated arenes or bezoyl chlorides.
M. Brenda, A. Greiner, W. Heitz, Makromol. Chem. 1990, 191, 1083-1100. DOI: 10.1002/macp.1990.021910511

New synthetic approach to poly(1,4-phenylenevinylene) and its derivatives by palladium catalyzed arylation of ethylene.
A. Greiner, W. Heitz, Makromol. Chem., Rapid Commun. 1988, 9, 581-588. DOI: 10.1002/marc.1988.030090813

Synthesis of monomers and polymers by the Heck reaction.
W. Heitz, W. Brügging, L. Freund, M. Gailberger, A. Greiner, H. Jung, U. Kampschulte, N. Nießner, F. Osan, H.-W. Schmidt, M. Wicker, Makromol. Chem. 1988, 189, 119-127. DOI: 10.1002/macp.1988.021890112

​Polymers with unusual conformationsHide

Original papers

Investigations on the morphology of poly-1,4-(phenylethyl xylylene) in solution.
H. Schnablegger, M. Antonietti, C. Göltner, I.  H. Stapff, F. Brink-Spalink, A. Greiner, Acta Polym. 1999, 50, 391-398. DOI: 10.1002/(SICI)1521-4044(19991201)50:11/12<391::AID-APOL391>3.0.CO;2-2

Synthesis and properties of a soluble, rigid poly(p-xylylene) with high molecular weight.
O. Schäfer, M. Antonietti, M. Zisenis, A. Greiner, Acta Polym. 1996, 47, 386-390.

​Polymers for medical applicationsHide

Reviews

Controlled antibody/(bio-)conjugation of inorganic nanoparticles for targeted delivery.
J.-M. Montenegro, V. Grazu, A. Surkhanova, S. Agarwal, J. M. Fuente, I. Nabiev, A. Greiner. W. J. Parak, Adv. Drug Deliv. Rev. 2012, 65, 677-688. DOI:10.1016/j.addr.2012.12.003

Electrospinning approaches toward scaffold engineering – a brief overview.
U. Boudriot, R. Dersch, A. Greiner, J. H. Wendorff, Artificial Organs 2006, 30, 785-792. DOI: 10.1111/j.1525-1594.2006.00301.x

Original papers

Elimination of Schistosoma mansoni in infected mice by slow release of artemisone.
D. Gold, M. Alian, A. Domb, Y. Karawani, M. Jbarien, J. Chollet, R. K. Haynes, H. N. Wong, V. Buchholz, A. Greiner, J. Golenser International Journal for Parasitology: Drugs and Drug Resistance 2017, 7, 241-247. DOI: 10.1016/j.ijpddr.2017.05.002

Unlocking nanocarriers for the programmed release of antimalarial drugs. A. Bagheri, S. Agarwal, J. Golenser, A. Greiner, Global Challenges 2017, 1, DOI: 10.1002/gch2.201600011

Controlled release of artemisone for the treatment of experimental cerebral malaria. J. Golenser, V. Buchholz, A. Bagheri, A. Nasereddin, R. Dzikowski, J. Guo, N. Hunt, S. Eyal, N. Vakruk, A. Greiner, Parasites & Vectors 2017, 10:117, DOI: 10.1186/s13071-017-2018-7

Quantitative comparison of the antimicrobial efficiency of leaching versus nonleaching polymer material.
J. Bruenke, I. Roschke, S. Agarwal, T. Riemann, A. Greiner, Macromol. Biosci. 2016, 16, 647-654 DOI: 10.1002/mabi.201500266

Antimicrobial hydantoin-containing polyesters.
L. Tan, S. Maji, C. Mattheis, M. Zheng, Y. Chen, E. Caballero-Diaz, P. R. Gil, W. J. Parak, A. Greiner, S. Agarwal, Macromol. Biosci. 2012, 12, 1068-1076. DOI: 10.1002/mabi.201100520

PDMAEMA based gene delivery materials.
S. Agarwal, Y. Zhang, S. Maji, A. Greiner, Materials Today 2012, 15, 388-393. DOI:10.1016/S1369-7021(12)70165-7

Electrospinning and cutting of ultrafine bioerodible poly(lactide-co-ethylene oxide) tri- and multiblock copolymer fibers for inhalation applications.
M. Thieme, S. Agarwal, J. H. Wendorff, A. Greiner, Polym. Adv. Technol. 2011, 22, 1335-1344. DOI: 10.1002/pat.1617

A polymeric drug depot based on 7-(2’-methacryloyloxyethoxy)-4-methyl-coumarin copolymers for photoinduced release of 5-fluorouracil designed for the treatment of secondary cataracts.
C. Sinkel, A. Greiner, S. Agarwal, Macromol. Chem. Phys. 2010, 211, 1857-1867. DOI: 10.1002/macp.201000206

RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: influence on stem cell differentiation. J. R. J. Paletta, S. Bockelmann, A. Walz, C. Theisen, J. H. Wendorff, A. Greiner, S. Fuchs-Winkelmann, M. D. Schofer, J. Mater. Sci. Mater. Med. 2010, 21, 1363-1369. DOI: 10.1007/s10856-009-3947-2

Influence of poly(L-lactic acid) nanofiber functionalization on maximum load, Young’s modulus, and strain of nanofiber scaffolds before and after cultivation of osteoblasts: an in vitro study. J. R. J. Paletta, K. Erffmeier, C. Theisen, D. Hussain, J. H. Wendorff, A. Greiner, S. Fuchs-Winkelmann, M. D. Schofer, The Scientific World Journal 2009, 9, 1382-1393. DOI: 10.1100/tsw.2009.149

Characterization of a PLLA-collagen I blend nanofiber scaffold with respect to growth and osteogenic differentiation of human mesenchymal stem cells. M. D. Schofer, U. Boudriot, I. Leifeld, R. I. Sütterlin, M. Rudisile, J. H. Wendorff, A. Greiner, J. R. J. Paletta, S. Fuchs-Winkelmann, The Scientific World Journal 2009, 9, 118-129. DOI: 10.1100/tsw.2009.13

Effect of direct RGD incorporation in PLLA nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells. M. D. Schofer, U. Boudriot, S. Bockelmann, A. Walz, J. H. Wendorff, A. Greiner, J. R. J. Paletta, S. Fuchs-Winkelmann, J. Mater. Sci.: Mater. Med. 2009, 20,1535-1540. DOI: 10.1007/s10856-009-3719-z

Lack of obvious influence of PLLA nanofibers on the gene expression of BMP-2 and VEGF during growth and differentiation of human mesenchymal stem cells.
M. D. Schofer, S. Fuchs-Winkelmann, C. Wack, M. Rudisile, R. Dersch, I. Leifeld, J. H. Wendorff, A. Greiner, J. R. J. Paletta, U. Boudriot, The Scientific World Journal 2009, 9, 313-319. DOI: 10.1100/tsw.2009.36

Influence of nanofibers on the growth and osteogenic differentiation of stem cells: a comparison of biological collagen nanofibers and synthetic PLLA fibers.
M. D. Schofer, U. Boudriot, C. Wack, I. Leifeld, C. Gräbedünkel, R. Dersch, M. Rudisile, J. H. Wendorff, A. Greiner, J. R. J. Paletta, S. Fuchs-Winkelmann, J. Mater. Sci.: Mater. Med. 2009, 20, 767-774. DOI: 10.1007/s10856-008-3634-8

Influence of poly(L-lactic acid) nanofibers and BMP-2-containing poly(L-lactic acid) nanofibers on growth and osteogenic differentiation of human mesenchymal stem cells.
M. D. Schofer, S. Fuchs-Winkelmann, C. Gräbedünkel, C. Wack, R. Dersch, M. Rudisile, J. H. Wendorff, A. Greiner, J. R. J. Paletta, U. Boudriot, The Scientific World Journal 2008, 8, 1269-1279. DOI: 10.1100/tsw.2008.163

Synthesis, characterization, and properties evaluation of methylcoumarin end-fun-ctionalized poly(methyl methacrylate) for photoinduced drug release.
C. Sinkel, A. Greiner, S. Agarwal, Macromolecules 2008, 41, 3460-3467. DOI: 10.1021/ma702622p

Material encapsulation and transport in core-shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. 
A. L. Yarin, E. Zussman, J. H. Wendorff, A. Greiner, J. Mater. Chem., 2007, 17, 2585-2599. DOI: 10.1039/b618508h

Poly(ethylene carbonate): a thermoelastic and biodegradable biomaterial for drug eluting stent coatings?
F. Unger, U. Westedt, P. Hanefeld, R. Wombacher, S. Zimmermann, A. Greiner, M. Ausborn, T. Kissel, J. Control. Rel. 2007, 117, 312-321. DOI: 10.1016/j.jconrel.2006.11.003

Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.
P. Hanefeld, U. Westedt, R. Wombacher, T. Kissel, A. Schaper, J. H. Wendorff, A. Greiner, Biomacromolecules 2006, 7, 2086-2090. DOI: 10.1021/bm050642k

Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings.
U. Westedt, M. Wittmar, M. Hellwig, P. Hanefeld, A. Greiner, A. K. Schaper, T. Kissel, Journal of Controlled Release 2006, 111, 235-246.  DOI: 10.1016/j.jconrel.2005.12.012

Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings.
J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, A. Greiner, Biomacromolecules 2005, 6, 1484-1488. DOI: 10.1021/bm0492576

Elektrogesponnene Poly-L-Laktid-Nanofasern als resorbierbare Matrix für Tissue-Engineering.
U. Boudriot, R. Dersch, B. Goetz, P. Griss, A. Greiner, J. H. Wendorff, Biomed. Technik  2004, 49, 242-247. DOI: 10.1515/BMT.2004.046

Two-photon induced drug delivery from polymeric intraocular lenses. N. Hampp, H.-C. Kim, S. Kreiling, L. Hesse, A. Greiner A. In: R. W. Steiner (ed), Therapeutic Laser Applications and Laser-Tissue Interactions 2003, 161-168. DOI: 10.1117/12.497976

Two-photon-induced cycloreversion reaction of coumarin photodimers.
H.-C. Kim, S. Kreiling, A. Greiner. N. Hampp, Chem. Phys. Lett. 2003, 372, 899-903. DOI: 10.1016/S0009-2614(03)00535-9

Thermotropic aromatic/lactide copolyesters with solubilizing side chains on aromatic rings.
Y. Chen, R. Wombacher, J. H. Wendorff, A. Greiner, Polymer 2003, 44, 5513-5520. DOI: 10.1016/S0032-3861(03)00571-8

Homopolymers and random copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and methyl methacrylate: structural characterization using 1D and 2D NMR.
H. Wickel, S. Agarwal, A. Greiner, Macromolecules 2003, 36, 2397-2403. DOI: 10.1021/ma025983u

Design, synthesis, and properties of new biodegradable aromatic / aliphatic liquid crystalline copolyesters.
Y. Chen, R. Wombacher, J. H. Wendorff, J. Visjager, P. Smith, A. Greiner,
Biomacromolecules 2003, 4, 974-980. DOI: 10.1021/bm0340164

Thermotropic aromatic/lactide copolyesters with lateral methoxyethyleneoxy substituents.
Y. Chen, R. Wombacher, J. H. Wendorff, A. Greiner, Chem.Mater. 2003, 15, 694-698. DOI: 10.1021/cm0213016

Synthesis and properties of liquid crystalline aromatic copolyesters with lactide 
moieties.
G. Haderlein, H. Petersen, C. Schmidt, J. H. Wendorff, A. Schaper, D. B. Jones, J.
Visjager, P. Smith, A. Greiner, Macromol. Chem. Phys. 1999, 200, 2080-2087. DOI: 10.1002/(SICI)1521-3935(19990901)200:9<2080::AID-MACP2080>3.0.CO;2-Y

Synthesis of hydrolytically degradable aromatic polyesters with lactide moieties.
G. Haderlein, C. Schmidt, J. H. Wendorff, A. Greiner, Polym. Adv. Techn. 1997, 8, 568-573. DOI: 10.1002/(SICI)1099-1581(199709)8:9<568::AID-PAT721>3.0.CO;2-W

​Nano/Confinement structuresHide

Reviews

Low-density open cellular sponges as functional materials.
S. Jiang, S. Agarwal, A. Greiner, Angew. Chemie - Intern. Ed. 2017, DOI: 10.1002/anie.201700684

Functional materials by electrospinning of polymer.
S. Agarwal, A. Greiner, J. H. Wendorff, Progress in Polymer Science 2013, 38, 963-991. DOI:10.1016/j.progpolymsci.2013.02.001

Vielseitige Nanofaserstrukturen durch Elektrospinnen.
J. H. Wendorff, S. Agarwal, A. Greiner, Nachrichten aus der Chemie 2011, 59, 714-718. DOI: 10.1002/nadc.201180495

Gradient nanowires and nanotubes. (feature article)
S. Agarwal, B. Eckhardt, F. Grossmann, A. Greiner, P. Göring, R. B. Wehrspohn, J. 
H. Wendorff, Phys. Status Solidi B 2010, 247, 2451-2457. DOI: 10.1002/pssb.201046240

Chemistry on electrospun polymeric nanofibers: merely routine chemistry or a real challenge?
S. Agarwal, J. H. Wendorff, A. Greiner, Macromol. Rapid Commun. 2010, 31, 1317-1331. DOI: 10.1002/marc.201000021

Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications.S. Agarwal, A. Greiner, J. H. Wendorff, Adv. Funct. Mater. 2009, 19, 2863-2879. DOI: 10.1002/adfm.200900591

Progress in the field of electrospinning for tissue engineering applications.
S. Agarwal, J. H. Wendorff, A. Greiner, Adv. Mater. 2009, 21, 3343-3351. DOI: 10.1002/adma.200803092

Use of electrospinning technique for biomedical applications. S. Agarwal, J. H. Wendorff, A. Greiner, Polymer 2008, 49, 5603-5621. DOI: 10.1016/j.polymer.2008.09.014

Polymere Nanofasern durch Elektrospinnen – Materialien für neue Anwendungen.
S. Agarwal, A. Greiner, J. H. Wendorff, Chemie Ingenieur Technik 2008, 80, 1671-1676. DOI: 10.1002/cite.200800117

State-of-the-art of polymer nanofibers.
S. Agarwal, A. Greiner, Man-Made Fiber Year Book 2008, 10, 1.

Electrospinning of nanofibres: towards new techniques, functions, and applications.
R. Dersch, M. Graeser, A. Greiner, J. H. Wendorff, Aus. J. Chem. 2007, 60, 719-728. DOI: 10.1071/CH07082

Electrospinning: A fascinating method for the preparation of ultrathin fibers.
A. Greiner, J. H. Wendorff, Angew. Chem. Int. Ed. 2007, 46, 5670-5703. DOI: 10.1002/anie.200604646

Elektrospinnen: eine faszinierende Methode zur Präparation ultradünner Fasern.
A.Greiner, J. H. Wendorff, Angew. Chem. 2007, 119, 5770-5805. DOI: 10.1002/ange.200604646

Das Reich der Nanotechnologie am Beispiel von Nanofasern und Nanoröhren.
A. Greiner, Europäischer Wirtschaftsverlag.

Biohybrid nanosystems with polymer nanofibers and nanotubes.
A. Greiner, J. H. Wendorff, A. L. Yarin, A. E. Zussman, Appl. Microbiol. Biotechnol. 2006, 71, 387-393. DOI: 10.1007/s00253-006-0356-z

Bausteine aus Polymeren: Nanofasern und Nanoröhrchen.
R. Dersch, A. Greiner, M. Steinhart, J.H. Wendorff, Chem. Unserer Zeit 2005, 39, 26-35. DOI: 10.1002/ciuz.200400321

Polymer nanofibers prepared by electrospinning.
R. Dersch, A. Greiner, J. H. Wendorff, in: Dekker Encyclopedia of Nanoscience and Nanotechnology, 2004, 293, Eds. Schwartz, J. A., Contesen, C. J.; Putgern, K.; Marcel Dekker New York.

Nanodrähte und Nanoröhren mit Polymeren.
A. Greiner, J. H. Wendorff, M. Steinhart, Nachrichten aus der Chemie 2004, 52, 426-431. DOI: 10.1002/nadc.20040520409


Original papers

Low density, thermally stable, and intrinsic flame retardant poly(bis(benzimidazo)benzophenanthrolinedione) sponge.
J. Zhu, S. Jiang, H. Hou, S. Agarwal, A. Greiner, Macromol. Mater. Eng. 2018 1700615, DOI: 10.1002/mame.201700615

Polymer nanofibre composite nonwovens with metal-like electrical conductivity.
S. Reich, M. Burgard, M. Langner, S. Jiang, X. Wang, S. Agarwal, B. Ding, J. Yu, A. Greiner, npj Flexible Electronics 2018, 2:5, DOI: 10.1038/s41528-017-0018-5

Highly efficient reusable sponge-type catalyst carriers based on short electrospun fibers.
G. Duan, M. Koehn-Serrano, A. Greiner, Macromol. Rapid Commun. 2017, 38, 1600511

Mesostructured ZnO/Au nanoparticle composites with enhanced photocatalytic activity.
C. Bojer, J. Schöbel, T. Martin, T. Lunkenbein, D. R. Wagner, A. Greiner, J. Breu, H. Schmalz, Polymer 2017, 128, 65-70

Nanofibre preparation of non-processable polymers by solid-state polymerization of molecularly self-assembled monomers.
J. Zhu, Y. Ding, S. Agarwal, A. Greiner, Nanoscale 2017, 9, 18169-18174

Exploration of the electrical conductivity of double-network silver nanowires/polyimide porous low-density compressible sponges.
S. Jiang, S. Reich, B. Uch, P. Hu, S. Agarwal, A. Greiner, Appl. Mater Interfaces 2017, 9, 34286-34293

Ultralight, thermally insulating, compressible polyimide fiber assembled sponges
S. Jiang, B. Uch, S. Agarwal, A. Greiner, ACS Appl. Mater. Interfaces 2017, 9, 32308-32315

Exploration of macroporous polymeric sponges as drug carriers.
G. Duan, A. Bagheri, S. Jiang, J. Golenser, S. Agarwal, A. Greiner, Biomacromolecules 2017, 18, 3215-3221 

Ultralight sponges of poly(para-xylylene) by template-assisted chemical vapour deposition.
T. Moss, I. E. Paulus, D. Raps, V. Altstädt, A. Greiner, e-polymers 2017, DOI: https://doi.org/10.1515/epoly-2016-0329

Spongy gels by a top-down approach from polymer fibrous sponges.
S. Jiang, G. Duan, U. Kuhn, M. Mörl, V. Altstädt, A. L. Yarin, A. Greiner, Angew. Chem. Int. Ed. 2017, 56, 3285-3288 DOI: 10.1002/anie.201611787

Electrogenic single-species biocomposites as anodes for microbial fuel cells.
P. Kaiser, S. Reich, D. Leykam, M. Willert-Porada, A. Greiner, R. Freitag, Macromol. Biosci. 2017, 17, DOI: 10.1002/mabi.201600442 

Tensile versus AFM testing of electrospun PVA nanofibers: bridging the gap from microscale to nanoscale.
B. Neugirg, M. Burgard, A. Greiner, A. Fery, Journal of Polymer Science Part B - Polymer Physics 2016, 54, 2418-2424. DOI: 10.1002/polb.24225

Polyimide nanofibers by "green" electrospinning via aqueous solution for filtration applications.
S. Jiang, H. Hou, S. Agarwal, A. Greiner, ACS Sustainable Chemistry & Engineering 2016, 4, 4797-4804. DOI: 10.1021/acssuschemeng.6b01031

Assembly of gold nanoparticles on gold nanorods using functionalized poly(n-isopropylacrylamide) as polymeric "glue".
Z. Fan, M. Tebbe, A. Fery, S. Agarwal, A. Greiner, Particle & Particle Systems Characterization 2016, 33, 698-702. DOI: 10.1002/ppsc.201600081

Patchy wormlike micelles with tailored functionality by crystallization-driven self-assembly: a versatile platform for mesostructured hybrid materials.
J. Schöbel, M. Karg, D. Rosenbach, G. Krauss, A. Greiner, H. Schmalz, Macromolecules 2016 DOI: 10.1021/acs.macromol.6b00330

Wet-laid meets electrospinning: nonwovens for filtration applications from short electrospun polymer nanofiber dispersions.
M. Langner, A. Greiner, Macromol. Rapid Commun. 2016, 37, 351-355. DOI: 10.1002/marc.201500514 

Self-organization of gold nanoparticle assemblies with 3D spatial order and their external stimuli responsiveness.
M. Koehn Serrano, T. A. F. König, J. S. Haataja, T. Lobling, H. Schmalz, S. Agarwal, A. Fery, A. Greiner, Macromol. Rapid Commun. 2016, 37, 215-220. DOI: 10.1002/marc.201500509

Polymer cages as universal tools for the precise bottom-up synthesis of metal nanoparticles. 
Z. Fan, X. Chen, M. Koehn Serrano, H. Schmalz, S. Rosenfeldt, S. Foerster, S. Agarwal, A. Greiner, Angew. Chemie Int. Ed. 2015, 54, 14539-14544. DOI: 10.1002/ange.201506415

Preparing a pseudo-solid by the reinforcement of a polydentate thioether using silver nanoparticles.
H. Pletsch, A. Greiner, S. Agarwal, Nanoscale, 2015, 7, 1977-1983. DOI:10.1039/c4nr06834c

Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes.
F. Mitschang, M. Langner, H. Vieker, A. Beyer, A. Greiner, Macromol. Rapid Commun., 2015, 36, 304-310. DOI:10.1002/marc.201400485

Modified vibrating-mesh nozzles for advanced spray-drying applications.
M. Beck-Broichsitter, I. E. Paulus, A. Greiner, T. Kissel, European Journal of Pharmaceutics and Biopharmaceutics, 2015, 92, 96-101. DOI:10.1016/j.ejpb.2015.03.001

Reversible gold nanorod alignment in mechano-responsive elastomers.
H. Pletsch, M. Tebbe, M. Dulle, B. Foerster, A. Fery, S. Foerster, A. Greiner, S. Agarwal, Polymer 2015, 66, 167-172. DOI:10.1016/j.polymer.2015.04.037

Polymer/nanoparticle hybrid materials of precise dimensions by size-exclusive fishing of metal nanoparticles.
Z. Fan, M. Koehn Serrano, A. Schaper, S. Agarwal, A. Greiner, Adv. Mater. 2015, 27, 3888-+. DOI:10.1002/adma.201501306

Ultrasound-mediated synthesis of high-molecular weight polystyrene-grafted silver nanoparticles by facile ligand exchange reactions in suspension.
H. Pletsch, L. Peng, F. Mitschang, A. Schaper, M. Hellwig, D. Nette, A. Seubert, A. Greiner, S. Agarwal, Small, 2014, 10, 201-208. DOI:10.1002/smll.201300594

Highly flexible and tough concentric triaxial polystyrene fibers.
S. Jiang, G. Duan, E. Zussman, A. Greiner, S. Agarwal, ACS Appl. Mater. & Interfaces, 2014, 6, 5918-5923. DOI:10.1021/am500837s

Tea- bag- like polymer nanoreactors filled with gold nanoparticles.
F. Mitschang, H. Schmalz, S. Agarwal, A. Greiner, Angew. Chem. Int. Ed., 2014, 53, 4972-4975. DOI:10.1002/anie.201402212

Immobilization of catalysts in poly(p-xylylene) nanotubes.
J. A. M. Hepperle, F. Mitschang, A. K. Bier, B. K. Dettlaff, A. Greiner, A. Studer, RSC Advances, 2013, 3, 25976-25981. DOI:10.1039/c3ra43647k

Short nylon-6 nanofiber reinforced transparent and high modulus thermoplastic polymeric composites.
S. Jiang, A. Greiner, S. Agarwal, Composites Science and Technology, 2013, 87, 164-169. DOI:10.1016/j.compscitech.2013.08.011

Short electrospun polymeric nanofibers reinforced polyimide nanocomposites.
S. Jiang, G. Duan, J. Schoebel, S. Agarwal, A. Greiner, Composites Science and Technology, 2013, 88, 57-61. DOI:10.1016/j.compscitech.2013.08.031

Transition-metal-functionalized PAMAM dendrimers encapsulated in PPX tubes as reusable catalysts.
F. Mitschang, B. K. Dettlaff, J. P. Lindner, A. Studer, A. Greiner, Macromolecules, 2013, 46, 8784-8789. DOI:10.1021/ma401815x

Smart secondary polyurethane dispersions.
F. Chen, J. Hehl, Y. Su, C. Mattheis, A. Greiner, S. Agarwal, Polym. Int., 2013, 62, 1750-1757. DOI:10.1002/pi.4481

Tough and Transparent Nylon-6 Electrospun Nanofiber Reinforced Melamine-Formaldehyde Composites.
S. Jiang, H. Hou, A. Greiner, S. Agarwal, ACS Appl. Mater. & Interfaces, 2012, 5, 2597-2603. DOI: 10.1021/am300286m

Vinyl-functionalized gold nanoparticles as artificial monomers for the free radical copolymerization with methyl methacrylate.
K. Gries, M. E. Helou, G. Witte, S. Agarwal, A. Greiner, Polymer 2012, 53, 1632-1639. DOI: 10.1016/j.polymer.2012.02.008

Electrospun copper oxide nanofibers for H2S dosimetry.
J. Hennemann, T. Sauerwald, C.-D. Kohl, T. Wagner, M. Bognitzki, A. Greiner, Phys. Status Solidi A 2012, 209, 911-916. DOI: 10.1002/pssa.201100588

Preparation of continuous gold nanowires by electrospinning of high-concentration aqueous dispersions of gold nanoparticles.
K. Gries, H. Vieker, A. Gölzhäuser, S. Agarwal, A. Greiner, Small, 2012, 8, 1436-1441. DOI: 10.1002/smll.201102308

Ultra-long palladium nanoworms by polymer grafts.
S. Bokern, K. Volz, S. Agarwal, A. Greiner, J. Nanopart. Res. 2012, 14, 1041. DOI: 10.1007/s11051-012-1041-z

Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites.
S. Jiang, G. Duan, H. Hou, A. Greiner, S. Agarwal, ACS Appl. Mater. Interfaces, 2012, 4, 4366-4372. DOI: 10.1021/am3010225

Electrospun nanofiber mats coating – new route to flame retardency.
E. Gallo, Z. Fan, B. Schartel, A. Greiner, Polym. Adv. Technol. 2011, 22, 1205-1210. DOI: 10.1002/pat.1994

Stimuli-responsive elastic polyurethane-based  superabsorber nanomat composites.
F. Chen, A. Greiner, S. Agarwal, Macromol. Mater. Eng., 2011, 296, 517-523. DOI: 10.1002/mame.201000387

Quick polymerization from electrospun macroinitiators for making thermoresponsive nanofibers.
C. Brandl, A. Greiner, S. Agarwal, Macromol. Chem. Eng., 2011, 296, 858-864. DOI: 10.1002/mame.201100031

Precisely designed gold nanoparticles by surface polymerization – artificial molecules as building blocks for novel materials.
S. Bokern, K. Gries, H.-H. Görtz, V. Warzelhan, S. Agarwal, A. Greiner, Adv. Funct. Mater. 2011, 21, 3753-3759. DOI: 10.1002/adfm.201100590

Preparation of gold nanoparticle-poly(L-methyl methacrylate) conjugates via ATRP polymerization.
K. Gries, K. Bubel, M. Wohlfahrt, S. Agarwal, U. Koert, A. Greiner, Macromol. Chem. Phys., 2011, 212, 2551-2557. DOI: 10.1002/macp.201100449

Synthesis of new thermoplastic elastomers by silver nanoparticles as cross-linker.
S. Bokern, Z. Fan, C. Mattheis, A. Greiner,  S. Agarwal, Macromolecules 2011, 44, 5036-5042. DOI: 10.1021/ma200738b

Polymer grafted silver and copper nanoparticles with exceptional stability against aggregation by a high yield one-pot synthesis.
S. Bokern, J. Getze, S. Agarwal, A. Greiner, Polymer 2011, 52, 912-920. DOI: 10.1016/j.polymer.2010.12.031

Highly oriented crystalline PE nanofibrils produced by electric-field-induced stretching of electrospun wet fibers.
T. Yoshioka, R. Dersch, A. Greiner, M. Tsuji, A. K. Schaper, Macromol. Mater. Eng. 2010, 295, 1082-1089. DOI: 10.1002/mame.201000207

Structure property correlations for electrospun nanofiber nonwovens.
D. Hussain, F. Loyal, A. Greiner, J. H. Wendorff, Polymer 2010, 51, 3989-3997. DOI: 10.1016/j.polymer.2010.06.036

Polymeric nanosprings by bicomponent electrospinning. S. Chen, H. Hou, P. Hu, J. H. Wendorff, A. Greiner, S. Agarwal, Macromol. Mater. Eng. 2009, 294, 265-271. DOI: 10.1002/mame.200800342

Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes.
Q. Guo, X. Zhou, X. Li, S. Chen, S. Agarwal, A. Greiner, H. Hou, J. Mater. Chem. 2009, 19, 2810-2816. DOI: 10.1039/b820170f  

High precision deposition electrospinning of nanofibers and nanofiber nonwovens. Ch. Hellmann, J. Belardi, R. Dersch, A. Greiner, J. H. Wendorff, S. Bahnmüller, Polymer 2009, 50, 1197-1205. DOI: 10.1016/j.polymer.2009.01.029

Reusable catalysts based on dendrimers trapped in poly(p-xylylene) nanotubes. J.-P. Lindner, C. Röben, A. Studer, M. Stasiak, R. Ronge, A. Greiner, J. H. Wendorff,  Angew. Chem. Int. Ed. 2009, 48, 8874-8877. DOI: 10.1002/anie.200903448

Poly(styrene-co-n-butyl acrylate) nanofibers with excellent stability against water by electrospinning from aqueous colloidal dispersions. A. Stoiljkovic, R. Venkatesh, E. Klimov, V. Raman, J. H. Wendorff, A. Greiner, Macromolecules 2009, 42, 6147-6151. DOI: 10.1021/ma900354u

Effect of different bicomponent electrospinning techniques on the formation of polymeric nanosprings. S. Chen, H. Hou, P. Hu, J. H. Wendorff, A. Greiner, S. Agarwal, Macromol. Mater. Eng. 2009, 294, 781-786. DOI: 10.1002/mame.200900139

“Barbed nanowires” from polymers via electrospinning.
A. Holzmeister, A. Greiner, J. H. Wendorff, Polym. Engineering and Science, 2009, 49, 148-153. DOI: 10.1002/pen.21233

Immobilization of oligostyrene-prolinol conjugates into polystyrene via electrospinning and applications of these fibers in catalysis.
C. Röben, M. Stasiak, B. Janza, A. Greiner, J. H. Wendorff, A. Studer, Synthesis 2008, 14, 2163-2168. DOI: 10.1055/s-2008-1067146

Polymer tubes with longitudinal composition gradient by face-to-face wetting. O. Kriha, P. Göring, M. Milbradt, S. Agarwal, M. Steinhart, R. Wehrspohn, J. H. Wendorff, A. Greiner, Chem. Mater. 2008, 20, 1076-1081. DOI: 10.1021/cm702088v

Functional self-assembled nanofibers by electrospinning.
A. Greiner, J. H. Wendorff, Adv. Polym. Sci. 2008, 219, 107-171. DOI: 10.1007/12_2008_146

Electrospun silica – polybenzimidazole nanocomposite fibers.
T. von Graberg, A. Thomas, A. Greiner, M. Antonietti, J. Weber, Macromol. Mater. Eng. 2008, 293, 815-819. DOI: 10.1002/mame.200800183

Electrospinning of poly-L-lactide nanofibers on liquid reservoir collectors.
T. Röcker, A. Greiner, e-Polymers 2008, No. 111.
 
Electrospun nanofiber belts made from high performance copolyimide.
S. Chen, P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, H. Hou, Nanotechnology 2008, 19, 015604 (9pp). DOI: 10.1088/0957-4484/19/01/015604

Cylindrical polymer nanostructures by solution template wetting.
S. Schlitt, A. Greiner, J. H. Wendorff, Macromolecules 2008, 41, 3228-3234. DOI: 10.1021/ma071822k

Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
C. Krüger, S. Agarwal, A. Greiner, J. Am. Chem. Soc. 2008, 130, 2710-2711. DOI: 10.1021/ja0763495

Magnetically anisotropic cobalt and iron nanofibers via electrospinning.
M. Graeser, M. Bognitzki, W. Massa, C. Pietzonka, A. Greiner, J. H. Wendorff,
Adv. Mater. 2007, 19, 4244-4247. DOI: 10.1002/adma.200700849

Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning.
A. Holzmeister, M. Rudisile, A. Greiner, J. H. Wendorff, Europ. Polym. J. 2007, 43, 4859-4867. DOI: 10.1016/j.eurpolymj.2007.09.014

Design of polymer nanofiber systems for the immobilization of homogeneous catalysts – preparation and leaching studies.
M. Stasiak, C. Röben, N. Rosenberger, Fl. Schleth, A. Studer, A. Greiner, J. H. Wendorff, Polymer 2007, 48, 5208-5218. DOI: 10.1016/j.polymer.2007.07.006

Polymer core-shell fibers with metal nanoparticles as nanoreactor for catalysis.
M. Graeser, E. Pippel, A. Greiner, J. H. Wendorff, Macromolecules 2007, 40, 6032-6039. DOI: 10.1021/ma070898d

Polymer fibers as carriers for homogeneous catalysts.
M. Stasiak, A. Studer, A. Greiner, J. H. Wendorff, Chem. Eur. J. 2007, 13, 6150-6156. DOI: 10.1002/chem.200601555

One-step production of polymeric microtubes by co-electrospinning.
Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner, J. H. Wendorff, Small 2007, 3, 1064-1073. DOI: 10.1002/smll.200600536

Organic tube/rod hybrid nanofibers with adjustable segment lengths by bidirectional template wetting.
O. Kriha, L. Zhao, E. Pippel, U. Gösele, R. B. Wehrspohn, J. H. Wendorff, M. Steinhart, A. Greiner, Adv. Funct. Mat. 2007, 17, 1327-1332. DOI: 10.1002/adfm.200601021

Nondestructive mechanical release of ordered polymer microfiber arrays from porous templates.
S. Grimm, K. Schwirn, P. Göring, H. Knoll, P. T. Miclea, A. Greiner, J. H. Wendorff, R. B. Wehrspohn, U. Gösele, M. Steinhart, Small 2007, 3, 993-1000. DOI: 10.1002/smll.200600544

Preparation of sub-micrometer copper fibers via electrospinning.
M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Gölzhäuser,  A. Greiner, Adv. Mater. 2006, 18, 2384-2386. DOI: 10.1002/adma.200600103

Polyelectrolyte functionalization of electrospun fibers.
K. Müller, J. F. Quinn, A. P. R. Johnston, M. Becker, A. Greiner, F. Caruso, Chem. Mater. 2006, 18, 2397-2403. DOI: 10.1021/cm0527060k

Preparation of hollow silica nanospheres by surface-initiated atom transfer radical polymerization on polymer latex templates.
Y. W. Chen, E. T. Kang, K. G. Neoh, A. Greiner, Adv. Funct. Mater., 2005, 15, 113-117. DOI: 10.1002/adfm.200400179

Preparation of poly(p-xylylene) TUFT-tubes containing palladium, silver, or copper nanoparticles.
Z. Sun, J. Zeng, H. Hou, H. Wickel, J. H. Wendorff, A. Greiner, Progr. Colloid Polym. Sci. 2005, 130, 15-19. DOI: 10.1007/b107393

Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes.
H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker, A. Greiner, S. Z. D. Cheng, Chem. Mater. 2005, 17, 967-973. DOI: 10.1021/cm0484955

Photo-induced solid-state crosslinking of electrospun poly(vinyl alcohol) fibers.
J. Zeng, H. Hou, J. H. Wendorff, A. Greiner, Macromol. Rapid Commun. 2005, 26, 1557-1562. DOI: 10.1002/marc.200500545

Poly(vinyl alcohol) nanofibers by electrospinning: influence of molecular weight on fibre shape.
J. Zeng, H. Hou, J. H, Wendorff, A. Greiner, e-Polymers 2005, No. 38.

Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics.
R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J. H. Wendorff, Polym. Adv. Technol. 2005, 16, 276-282. DOI: 10.1002/pat.568

The role of iron carbide in multiwalled carbon nanotube growth. A. K. Schaper, H.  Hou, A. Greiner, F. Phillipp, Jounal of Catalysis 2004, 222, 250-254. DOI: 10.1016/j.jcat.2003.11.011

Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylnitrile environments: electrospun composite nanofiber sheets.
J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, S. Z. D. Cheng, J. Am. Chem. Soc. 2004, 126, 15754-15761. DOI: 10.1021/ja048648p

Copper nanoparticles encapsulated in multi-shell carbon cages.
A. K. Schaper, H. Hou, A. Greiner, R. Schneider, F. Philipp, Appl. Phys. A. 2004, 78, 73-77. DOI: 10.1007/s00339-003-2199-0

Compound core-shell polymer nanofibers by co-electrospinning.
Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, Adv. Mater. 2003, 15, 1929-1932. DOI: 10.1002/adma.200305136

Large scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor.
H. Hou, J. Zeng, F. Weller, A. Greiner, Chem. Mater. 2003, 15, 3170-3175. DOI: 10.1021/cm021290g

Poly-L-lactide nanofibers by electrospinning – influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology.
J. Zeng, H. Hou, A. Schaper, J. H. Wendorff, A. Greiner; e-Polymers 2003, No. 9.

Electrospun nanofibers: internal structure and intrinsic orientation.
R. Dersch, T. Liu, A. K. Schaper, A. Greiner, J. H. Wendorff; J. Polym. Sci.: Part A: Polym. Chem. 2003, 41, 545-553. DOI: 10.1002/pola.10609

Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor.
H. Hou, A. K. Schaper, J. Zeng, F. Weller, A. Greiner, Chem. Mater. 2003, 15, 580-585. DOI: 10.1021/cm020970g

Multi-walled carbon nanotubes with uniform chirality: evidence for scroll structures.
W. Ruland, A. K. Schaper, H. Hou, A. Greiner, Carbon 2003, 41, 423-427. DOI: 10.1016/S0008-6223(02)00342-1

Carbon nanotubes and spheres produced by modified ferrocene pyrolysis.
H. Hou, A. K. Schaper, F. Weller, A. Greiner, Chem. Mater. 2002, 14, 3990-3994. DOI: 10.1021/cm021206x

Polymer nanotubes via wetting of ordered porous templates.
M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Science 2002, 296, 1997. DOI: 10.1126/science.1071210

Poly(p-xylylene) nanotubes by coating and removal of ultrathin polymer template fibers.
H. Hou, J. Zeng, A. Reuning, A. Schaper, J. H. Wendorff, A. Greiner, Macromolecules 2002, 35, 2429-2431. DOI: 10.1021/ma011607i

Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers.
R. A. Caruso, J. H. Schattka, A. Greiner, Adv. Mater. 2001, 13, 1577-1579. DOI: 10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S

Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends.
M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, Polymer Engineering and Science 2001, 41, 982-989. DOI: 10.1002/pen.10799

Nanostructured fibers via electrospinning.
M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater. 2001, 13, 70-72. DOI: 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO;2-8

Polymer, metal, and hybrid nano- and mesotubes by coating degradable polymer templates fibers(TUFT process).
M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. 
H. Wendorff, A. Greiner, Adv. Mater. 2000, 12, 637-640. DOI: 10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO;2-W

MiscellaneousHide

Fate of so-called biodegradable polymers in seawater and freshwater. 
A. R. Bagheri, C. Laforsch, A. Greiner, S. Agarwal, Global Challenges 2017, 1700048 DOI: 10.1002/gch2.201700048

Large multipurpose exceptionally conductive polymer sponges obtained by efficient wet-chemical metallization. 
M. Langner, S. Agarwal, A. Baudler, U. Schroeder, A. Greiner, Adv. Funct. Mater. 2015, 25, 6182-6188.
DOI: 10.1002/adfm.201502636

Polymer-bound 4-methylcoumarin/1-heptanoyl-5-fluorouracil photodimers: NMR elucidation of dimer structure.
C. Sinkel, M. C. Schwarzer, G. Frenking, A. Greiner, S. Agarwal, Magn. Reson. Chem. 2011, 49, 70-75.
DOI: 10.1002/mrc.2711

Living characteristics of the free-radical ring-closing polymerization of diallyldimethylammonium chloride.
J. P. Blinco, A. Greiner, C. Barner-Kowollik, S. Agarwal, Europ. Polym. J. 2011, 47, 111-114.
DOI: 10.1016/j.eurpolymj.2010.10.025

Thermomorphological study of the terahertz lattice modes in polyvinylidene fluoride and high-density polyethylene.
S. Wietzke, C. Jansen. M. Reuter, T. Jung, J. Hehl, D. Kraft, S. Chatterjee, A. Greiner, M. Koch, Appl. Phys. Lett. 2010, 97, 022901(1-3).
DOI: 10.1063/1.3462312

An introduction to electrospinning and nanofibers (book review).
A. Greiner, Journal of Engineered Fibers. And Fabrics 2008, 3, 46-47.

Functional polymer nanofibers and nanotubes via electrospinning.
J. Zeng, Z. Sun, H. Hou, R. Dersch, H. Wickel, J. H. Wendorff, A. Greiner, in: Polymeric Nanofibers, ed. D. H. Reneker, H. Fong, Oxford University Press, USA, 2007.

Microwave-assisted controlled ring-closing cyclopolymerization of diallyldimethylammonium chloride via the RAFT process.
Y. Assem, A. Greiner, S. Agarwal, Macromol. Rapid Commun. 2007, 28, 1923-1928.
DOI: 10.1002/marc.200700377

Microwave-assisted free radical copolymerizations of styrene and methyl methacrylate.
H. Stange, A. Greiner, Macromol. Rapid Commun. 2007, 28, 504-508.
DOI: 10.1002/marc.200600841

Microwave-assisted free radical polymerizations and copolymerizations of styrene and methyl methacrylate.
H. Stange, M. Ishaque, N. Niessner, M. Pepers, A. Greiner, Macromol. Rapid Commun. 2006, 27, 156-161.
DOI: 10.1002/marc.200500640

Quick atom transfer radical polymerization of N,N-diisopropyl ammonium acrylate in the presence of air.
A. Kazemi, S. Agarwal, A. Greiner, Designed Monomers and Polymers, 2005, 8, 673-678.
DOI: 10.1163/156855505774597731

A commentary on “Polyarylenes and poly(arylenevinylenes), 7. A soluble ladder polymer via bridging of functionalized poly(p-phenylene)-precursors” by U. Scherf, K. Müllen. (Makromol. Chem., Rapid Commun. 1991, 12, 489-497.)
A. Greiner, Macromol. Rapid Commun. 2005, 26, 1361-1370.
DOI: 10.1002/marc.200500486

Synthesis of methyl methacrylate and N-acryl itaconimide block copolymers via atom-transfer radical polymerization.
V. Anand, S. Agarwal, A. Greiner, V. Choudhary, Polym. Int. 2005, 54, 823-828.
DOI: 10.1002/pi.1776

Makromolekulare Chemie 2001. S. Mayer, R. Zentel, A. Greiner, D. Ulbrich, M. Vollmer, Nachrichten aus der Chemie 2002, 50, 346-357. DOI: 10.1002/nadc.20020500312

Makromolekulare Chemie 2001. S. Mayer, R. Zentel, M. Wilhelm, A. Greiner, Nachrichten aus der Chemie 2002, 50, 442-448. DOI: 10.1002/nadc.20020500409

Trend report macromolecular chemistry 2001. S. Mayer, R. Zentel, M. Wilhelm, A. Greiner, Macromol. Chem. Phys. 2002, 203, 1743-1753.
DOI: 10.1002/1521-3935(200208)203:12<1743::AID-MACP1743>3.0.CO;2-7

Photonic and optoelectronic polymers (book critics).
A. Greiner, Adv. Mater. 1998, 10, 1055.

Chemistry and industry of macromonomers (book critics).
A. Greiner, Acta Polym. 1994, 45, 397-397.


Webmaster: Univ.Prof.Dr. Andreas Greiner

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact