Druckansicht der Internetadresse:

Faculty of Biology, Chemistry & Earth Sciences

Macromolecular Chemistry II – Prof. Dr. Andreas Greiner (Macromolecular Chemistry & Technology) & Prof. Dr. Seema Agarwal (Advanced Sustainable Polymers)

Print page

News

Overview


Tunable, concentration-independent, sharp, hysteresis-free UCST phase transition from poly(N-acryloyl glycinamide-acrylonitrile) system

05.10.2016

Tunable, concentration-independent, sharp, hysteresis-free UCST phase transition from poly(N-acryloyl glycinamide-acrylonitrile) system
Florian Käfer, Arne Lerch, Seema Agarwal
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2017, 55 (2), 274-279.

Poly(N-acryloylglycinamide-co-acrylonitrile) (poly(NAGA-AN)) copolymers were synthesized using reversible-addition-fragmentation transfer polymerization. In contrast to poly(NAGA) the thermoresponsive behavior of poly(NAGA-AN) shows a narrow cooling/heating hysteresis in water with a tunable cloud point, depending on the acrylonitrile amount in polymer. Furthermore, we showed that there is no significant effect of the solution concentration on the cloud point and stable phase transition behavior in electrolyte solutions, which is presumable controlled by forming stable micellar like structures as a result of the block/graft-copolymer structure. This is in contrast to poly(NAGA) which shows a strong concentration dependent cloud point in aqueous solution with a broad cooling/heating hysteresis.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact